If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4.9t^2+24.5t-19.6=0
a = -4.9; b = 24.5; c = -19.6;
Δ = b2-4ac
Δ = 24.52-4·(-4.9)·(-19.6)
Δ = 216.09
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24.5)-\sqrt{216.09}}{2*-4.9}=\frac{-24.5-\sqrt{216.09}}{-9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24.5)+\sqrt{216.09}}{2*-4.9}=\frac{-24.5+\sqrt{216.09}}{-9.8} $
| 408=28h+72 | | 32=-16x^2+50x+5 | | -7=17-6p | | 3x+4=2+6x-10 | | x+6+8=10+x+3 | | 29-x/7=13 | | |1/2−x/3|=-5/6 | | (x+6)+8=10+(x+3) | | 23=v/4+15 | | 13-2x=-127 | | p/3–(-10)=11 | | 2/5m+14=24 | | -6x+28=-2(x-2) | | b/16=14 | | p/3–-10=11 | | 4x-5x+8=5x-9 | | x+21=30+14 | | 3x+1–5=(-16)+6x | | (9-r)+(12-r)=15 | | -12=3(y+5)-6y | | 4m-12=15+5m-12=15+m | | 7/10k+13=20 | | 21x=14(30) | | m/3-10=-7 | | w+14=25.9 | | 26x+4=3(10x–1) | | (5-r)+(12-r)=15 | | 100x+1200=180 | | x+6/2=3x/7 | | 2(10-7x)=20-14x | | 40-x=294 | | m/3−10=–7 |